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Abstract. This paper shows that the properties of space-time that constitutes the background of the
theory of special relativity, namely its dimensionality, the correct partition of dimensions between
one time-type and three space-type dimensions and the Minkowski metrics, may emerge from a
set of completely interacting binary units structured by a noise defined in a Landau-type free energy
of Higgs fields and by gauge symmetries, in particular those related to the permutation group of four objects.

1 Introduction

Lloyd has put forward the idea that the universe could be
entirely made up of elementary binary physical systems, to
which we shall refer as “cosmic bits” (or CB’s) and that the
laws of physics could be seen as a series of computations
carried out on those bits. Relying upon entropy calculations
Lloyd suggested that the number of bits is of the order
of [1, 2]

NCB ≈ 10120 .

We may find this idea quite logical: the conventional ap-
proach in physics has been reductionist, explaining “com-
plex” phenomena by the means of more “simple” systems.
Introducing cosmic bits leads to push this approach to its
limit since it is impossible to define physical systems with
less than one bit of information.

The price to pay is the loss of familiar notions such as
space, time, mass . . . , that constitute our environment. It is
not possible either to define the shape of a CB, not even its
position, since this would require the introduction of more
information to characterize the CB, which is not allowed.
The notion of space-time loses its ontological status and
must be rebuilt from a set of axioms that are defined in
Sect. 2.

A physics based on CB’s is a priori neither a relativistic
(or classical) physics nor a quantum physics but it is a
combinatorial and statistical physics. In actual fact the
status of CB’s may be seen as classical since the states σa

and σb of two CB’s are commutating real numbers

σaσb = σbσa σα = ± 1

but one may build, by using the CB’s, physical objects
such as fields, that do not commutate (see Sect. 6).

The idea that space-time might be discrete is not a new
one. It has already been mentioned in antiquity to pro-
vide an answer to the Zeno’s paradox according to which
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Achille can never catch a tortoise [3]. In 1887 Lord Kelvin
considered a discrete foam-like model for the aether. In
1928 Einstein studied a combinatorial model of space with
the hope of unifying electromagnetism and gravitation [4].
Quantum field theorists were, in the sixties, faced with seri-
ous difficulties with infinite quantities and it was suggested
that the existence of some cut-off associated with the dis-
crete nature of space-time could remove the divergences.
The success of renormalization techniques, however, made
the hypothesis of discrete spaces unnecessary.

The idea of a discrete space-time was not completely
abandonned anyway, and Penrose, for example, proposed
that space-time could be constituted of spin networks [5].
The resulting model is called the spin-foam model of space-
time [6] (the term “foam” has been introduced by Wheeler).
Hawking proposed another type of foam, namely a foam of
mini black holes that continuously form and dissolve [7].

These foam theories assume that the structures sup-
porting the fundamental physical systems, namely spins
or mini black holes, are based either on quantum physics,
as is the case for spins, or on the usual space-time struc-
ture of general relativity, as is the case for the mini black
holes (black holes also display a quantum behaviour since,
according to Hawking, they may be considered as black
bodies).

The model we put forward in this article is not based on
such presuppositions. It assumes that space is entirely, and
only, made of CB’s that is to say, of physical systems whose
states are fully determined by a binary variable. Cosmic bits
can be seen as Ising spins (commutating variables indeed).
All CB’s interact through random binary interactions (see
Fig. 1).

Our model can therefore be seen as a variety of spin glass
models [8]. If it differs from the above mentionned foam
models, it adopts, however, some of their views. An entropy
is associated with black holes, for example, that is to say,
black holes contain a given, finite, amount of information
bits. A space made of mini black holes therefore is such that
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Fig. 1. A spin glass model for the physical space: a set of cosmic
bits in states σ = +1 (bulk circles) or σ = −1 (in open circles)
interconnected through negative interactions (bulk lines) and
positive interactions (dotted lines). The cosmic points are sets of
cosmic bits fully interconnected through negative interactions
(gathered within the large dotted circles). All lines of the figures
are only relational. They have no geometrical meanings

any piece of space houses a finite amount of information.
This hypothesis has been considered by some theorists as
a sufficient condition for the space to be discrete. We also
agree with Penrose that particles are not actors created in a
pre-existing space-time background but rather that CB’s,
which are the fundamental components of particles, create
their own space-time and define their own geometries.

Thepurpose of this article is to show that the very simple
model we propose can account for the structural properties
of space-time as we know them. To achieve this goal, the
strategy consists in showing that the axioms determine a
dynamics of states described by a Klein-Gordon equation.
The identification of constants which enter the definition of
the Klein-Gordon equation with their expressions in terms
of the three parameters of the model then leads to a possible
physical interpretation of these fundamental constants.

2 A model for space

The four axioms of the model are the following:
(i) The cosmos, space as a whole, is entirely made of a
countable set of cosmic bits (CB’s) and the state of the
universe, ψ = {σa} a = 1, 2, . . . ,NCB, is determined by a
family σa = ±1 of CB’s analogous to Ising spins
(ii) The realizable states of the universe are those which
minimize the following quadratic real functional of CB
states

H (ψ) =
∑
ab

Jabσaσb = ψTJψ (1)

where the elements of the matrix J can only take two values:

Jab = ±J/n
To support this statement we may argue that we know,

by experience, that the universe is not in a state of com-
plete disorder and therefore that all the possible states of

the universe are not realized. As a consequence the model
assumes that there must exist a functional of bits states
that is, at least approximately, minimized for the realizable
physical states of the universe. The most general functional
is written as an expansion over all possible multiplets of
CB’s.

H (ψ) =
∑

multiplets

∑
ab...c

Jab...cσaσb . . . σc .

Actually all terms are not necessary because it is always
possible to reproduce the minima byH (ψ) =

∑
ab

Jabσaσb =

ψTJψ using only quadratic terms.
As an example let us assume that the physical state

ψ0 = {ξa}
is a minimum for the most general functional. This is also
the physical state that minimizes the quadratic functional
with interactions given by

Jab = −ξaξb
Moreover the CB’s cannot be distinguished from one

another. The same holds for their interactions because a
given set of different interactions could be used to discrimi-
nate one bit from the others. All interactions have therefore
been given the same absolute value.
(iii) A “cosmic point” i (or CP) is a set of CB’s fully inter-
connected through negative binary (ferromagnetic) inter-
actions, Jab = −J/n, where n is the number of CB’s inside
a CP. A CB is a close neighbor of all other bits of the CP
that it belongs to and the notion of distance is meaningless
inside a CP. The set of CP’s constitutes a partition of the
universe. It is assumed that n, the number of CB’s in a CP,
and N , the number of CP’s in the universe, are huge num-
bers. Since space is homogeneous, all CP’s play exactly the
same role. In particular nmust be approximately the same
for all CP’s. The fluctuations of n are statistical and are
given by

∆n/n = 1/ (n)1/2
.

They approach zero in the thermodynamic limit of very
large n’s.
(iv) The bits of a CP are subject to a degree of disorder
whose strength is given by a parameter b called “cosmic
noise”. bmay be considered as the inverse of a temperature
and the larger b the smaller the temperature. This tem-
perature is similar to the one introduced by Higgs in his
definition of the Higgs field [9]. It facilitates the applica-
tion of statistical mechanics to derive the thermodynamic
properties of cosmic points.

Let us give a few arguments to support this axiom. In
order to give masses to fermions, Higgs introduced a scalar
field h whose value is obtained by minimizing a Landau-
type free energy

F (h) =
λ

2
h2 +

µ

4
h4 with λ = bc − b , µ > 0 (2)

where b is the inverse of a temperature. If b < bc then
h = 0, and vacuum is called symmetrical vacuum, whereas
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if b > bc the Higgs field does not vanish and the vacuum is
asymmetrical which is a necessary condition to give mass
to fermions. One generally believes that introducing the
parameter b is just a mathematical trick, but we propose
here to take it seriously and to consider a CP as a thermo-
dynamic system which will be studied by using the tools
of statistical mechanics. This is not a trivial assertion, be-
cause statistical mechanics relies upon two fundamental
hypotheses that we must discuss. On the one hand it as-
sumes that there exists a reservoir and, on the other hand,
that the ergodic hypothesis is satisfied, namely that tem-
poral averages may be replaced by ensemble averages.
(1) A CP, that is to say a set of bits all interacting through
negative interactions, is linked to other CP’s through a sum
of binary interactions with random signs. The result is a
generally weak CP to CP interaction obeying a Gaussian
distribution. One therefore may consider that the set of all
other CP’s constitute a reservoir for a given cosmic point.
(2) The validity of the ergodic hypothesis seems to be more
difficult to assess because time is not defined inside a CP.
Actually this makes the ergodic hypothesis even more at-
tractive, since, in the absence of any concept of time, only
ensemble averages may be given a physical meaning.

The functional Hi of a cosmic point is given by

Hi = −J

n

∑
〈αβ〉

σiασiβ

where ‘i’ is the label of a CP and α is the label of a CB
inside the CP. The sum is taken over all pairs of cosmic bits
inside the cosmic point ‘i’ . It is an extensive quantity since,
if all bits are such that σiα = +1 or σiα = −1, one has

Hi � −nJ
and the functional is proportional to the size n of the
system. Then, the distribution of cosmic points states is
Maxwellian:

ρ (Hi) =
1
Zi

exp (−bHi)

where Zi is the partition function

Zi =
∑

{σiα}
exp (−bHi) .

The sum is over all possible realizations of cosmic bit
states for CP ‘i’. The statistical mechanics of fully con-
nected spin glasses, systems close to the one introduced
in this paper, has been worked out by Sherrington and
Kirkpatrick [10].

To summarize, our model of space, defined as a set
of randomly interacting binary units, is determined by
three parameters, respectively the interaction J between
the CB’s, the number n of CB’s into a CP and the cosmic
noise b.

3 Order parameters and gauge symmetries
of cosmic points

Order, called a polarization, tends to spontaneously appear
in an isolated CP (a CP isolated from the other CP’s) due

to a balance between the tendency of CB’s to take the
same value σ = ± − 1, that arises from the ferromagnetic
interactions, and a tendency to disorder that results from
the action of the thermal noise. The polarization of a given
CP is the thermal average of an order parameter defined
by

si =
1
n

∑
α

σiα α = 1, . . . , n; i = 1, . . . , N.

The polarization is given by the following mean field equa-
tion:

〈si〉 = ϕi = tanh (bJϕi) , (3)

an exact equation in the limit of large n’s.
This equation is obtained by minimizing the “free func-

tional” given by (see Appendix A)

F (ϕi) = n

(−J
2
ϕ2

i

+
1
b

[(
1 + ϕi

2

)
Ln (1 + ϕi)

+
(

1 − ϕi

2

)
Ln (1 − ϕi)

])
. (4)

Expanding the logarithmic functions to the fourth or-
der yields

F (ϕi) = λϕ2
i + µϕ4

i (2′)

with

λ =
n(1 − bJ)

2b
; µ =

n

12b
. (5)

Equation (3) has non zero solutions, called asymmetri-
cal vacuum, if λ < 0, that is to say if bJ > 1. The polariza-
tion is a scalar field whose value is determined by the label
‘i’. Since it obeys the Higgs field formalism (in particular
it is a scalar field and it minimizes the same Landau type
“free functional”), it is tempting to see the polarization as
being the Higgs field itself. An asymmetrical vacuum is a
necessary condition for gauge theories such as the GSW
(Glashow, Salam, and Weinberg) theory [9] to be relevant.
Therefore one must have bJ > 1. Let us also recall that,
in mean field theories, all polarization fluctuations vanish.

To introduce the concept of dimensions we now try
to answer the following question: can a cosmic point be
considered as a set of d subsets (sub-cosmic points so to
speak) such that the system obtained by putting these d
sub-cosmic points together, reproduces the polarization of
the cosmic point?

Let niµ (with µ = 1, . . . , d) be the number of bits asso-
ciated with the sub-cosmic point µ of CP ‘i’. For the time
being there is no restriction on the values of the niµ except
that they have to obey the following constraint:∑

µ

niµ = n .

The order parameter of the sub-cosmic point µ is defined by

siµ =
1
niµ

∑
α

σiµα ,
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where α is here the label of a CB belonging to the sub-
cosmic point µ in CP ‘i’. The polarization of an isolated
sub-cosmic point µ is given by an equation similar to (3)
with a renormalized interaction

〈siµ〉 = tanh
(
b
Jniµ

n
〈siµ〉

)
. (6)

This polarization does not vanish if

bJ
niµ

n
> 1 . (1)

Then all sub-cosmic points are polarized at once, whatever
the niµ’s, if the following condition is fulfilled:

bJ
∑

µ

niµ

n
= bJ >

∑
µ

1 = d. (7)

This is a necessary condition for the set of sub-cosmic points
to be considered as a CP. The condition is not sufficient,
however, since in the range

1 < bJ <
n

niµ
,

the sub-cosmic point µ is not polarized. In fact we have only
considered so far non interacting sub-cosmic points. The
sub-cosmic points do interact and these are the interactions
that stabilize the global polarization of a CP as a whole.

To study those interactions it is necessary to look care-
fully at the thermal properties of the set of sub-cosmic
points. The calculation of the free functional of the set of
polarizations is carried out in Appendix A. We obtain

F ({〈siµ〉}) =
−J
2n

∑
µν

niµniν 〈siµ〉 〈siν〉

+
∑

µ

niµ

2b

× ((1 + 〈siµ〉) Ln (1 + 〈siµ〉)
+ (1 − 〈siµ〉) Ln (1 − 〈siµ〉)). (8)

The polarizations are given by the minima of this free
funcional. With d = 1, (8) becomes identical to (4).

A state of the universe can then be reformulated in
terms of polarizations. It is written as a column vector

ψ =




...
φi

...

...




where the state φi of CP ‘i’ is defined by

φi =




...
ϕiµ

...
ϕid




and the polarization components by

ϕiµ =
niµ

n
〈siµ〉 . (9)

The polarization components must obey the following con-
straint

∑
µ

ϕiµ =
1
n

∑
µ

niµ 〈siµ〉 =
1
n

〈∑
µα

σiµα

〉
= ϕi . (10)

In our model, physics is determined by the polarization
components but the labels of the components are arbitrary
and, therefore, relabeling the names of the components
must not change the physical phenomena.

This gives rise to a first local gauge invariance (GI1)
which states that physics must be left invariant under the
operations of the group Sd of permutations of d objects.
Locality means that this invariance is associated with one
cosmic point, an object with no internal dimensions.

In other respects, (10) may be seen as the equation of
a hyperplane in a d-dimensional space to which we shall
refer as a representation space. A state of a CP is a point
in this representation space and GI1 is a symmetry that
permutes the coordinates of the point.

This is not the only gauge symmetry, however, because
nothing determines the orientation of axes in the represen-
tation space whatsoever. Therefore physics must also be
left invariant under the operations of group SO(d). This
symmetry forces the polarization components to obey a
constraint obtained from (10) by averaging over all possi-
ble rotations. Let us write (10) as

ϕ2
i =

∑
µ

ϕ2
iµ +

∑
µ,ν �=µ

ϕiµϕiν .

Averaging this expression over all possible rotations makes
the cross terms vanish and the constraint is∑

µ

ϕ2
iµ = ϕ2

i . (11)

This is the expression of a second local gauge invariance
(GI2).

Another way to obtain the expression of the free func-
tional is to look at the thermal average of the functional
(1) in the framework of the mean field theory. Equation (1)
is written as

H = ψTJψ =
∑

iµα,jνβ

Jiµα,jνβσiµασjνβ

and, since there is no polarization fluctuation in mean field
theories, the free functional can be expressed as

F = 〈H〉 =
∑

iµα,jνβ

Jiµα,jνβ 〈σiµα〉 〈σjνβ〉

=
∑
iµ,jν


∑

αβ

Jiµα,jνβ


niµ 〈siµ〉njν 〈sjν〉



P. Peretto: Space-time generated from a set of binary units 571

i=1 i=2

i=3

µ=1

µ=2

µ=3

µ=4

µ=1

µ=1

µ=2

µ=2

µ=3

µ=3

µ=4

µ=4

Gµν

µν

µνG

GD

D D

12

2313

Fig. 2. The same model, as in Fig. 1, once the thermal averages
have been taken into account and the cosmic points divided
in a series of d=4 sub-cosmic points. Open and bulk circles
represent polarization components

=
∑
iµ,jν

Kiµ,jνϕiµϕjν

with
Kiµ,jν =

∑
αβ

Jiαµ,jβν .

Due to gauge invariances GI1 and GI2 these parameters
factorize

Kiµ,jν = ∆ijGµν

that is to say
K = ∆⊗G

since, for any given pair of CP’s ‘i’ and ‘j’, they must be
left unchanged whatever the permutations or rotations of
polarization components (see Fig. 2).

G is a square, real, symmetric, d-dimensional matrix
that operates on the polarization components of a given
CP. Gµν describes the interaction between the µ and the ν
components of the polarization inside one and the same CP.

∆ is a square, real, symmetric, N -dimensional matrix.
Its element ∆ij describes the interaction that links the
CP ‘i’ to the CP ‘j’. ∆ij is a sum of n binary random vari-
ables. It is therefore a random variable whose distribution
is Gaussian and centered at zero.

4 The realizable states as elements
of vector spaces

In this section we show that the set of realizable states of
a given matter field makes a Hilbert space.

The realizable states are those that minimize the
free functional

F = ψT∆⊗Gψ (12)

under the set of constraints GI2 (11)

φT
i φi = ϕ2

i .

The problem can be solved by using the method of Lagrange
multipliers which requires one to minimize the following ex-
pression

∑
ijµν

ϕiµ∆ijGµνϕjν −
∑

i

κi

(∑
µ

ϕ2
iµ − ϕ2

i

)

that, therefore, must be left invariant under the alteration
of one component, that is to say

2δϕiµ


∑

jν

∆ijGµνϕjν − κiϕiµ


 = 0.

The polarization components therefore obey an eigenvalue
equation: ∑

jν

∆ijGµνϕjν = κiϕiµ . (13)

Space, in the present appoach, is homogeneous and the
eigenvalues are the same whatever the cosmic point. The
problem is then equivalent to minimizing (12) under the
constraint

ψTψ =
∑

i

ϕ2
i = C(bJ) .

Its solution is
(∆⊗G) ψ = κψ . (14)

The set of eigenstates corresponding to a given eigenvalue
κ is called a matter field. The eigenstates associated with a
given eigenvalue κ, that is to say with a given matter field,
constitutes a vector space, since any linear combination of
two eigenstates is also an eigenstate

(∆⊗G) (λ1ψ1 + λ2ψ2) = κ (λ1ψ1 + λ2ψ2) .

Moreover, this vector space may be endowed with an inner
product since

ψTψ =
∑

i

φT
i φi =

∑
i

ϕ2
i = Ct.

The vector space spanned by the states of a matter free field
(identified by the eigenvalue κ), is then an Hilbert space.

Several remarks can be made:
(i) The eigenspaces are highly degenerate because they
account for all realizable states of a given matter field.

Since there are so many possible states for a matter
field and since the matter field must be in one of these
states, the realized state must be chosen at random.
(ii) We will see that the indices µ and ν are space labels
as well as time labels. Since time and space indices are
intertwined in the eigenvalue equation (14), an eigenstate
describes a state of the universe for all times and at all
places at once (a complete history so to speak).
(iii) The eigenstates may be normalized as long as the
polarization of CP’s is non-zero, that is to say as long as
bJ > 1. It is then, so to speak, impossible to “compress”
the eigenstates.
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5 Dimension organization

It must, first of all, be stressed that all considerations that
we develop in this section are made in the framework of
a physics which is still combinatorial and, therefore, that
time, space, dimensions, dimensionality, . . . are nothing
but names that illustrate the objects we introduce. The
identification with the usual meanings of those terms will
be carried out in Sect. 6.

We have seen that the description of a CP as a set of
sub-cosmic points loses its meaning if the sub-cosmic points
are not all polarized at once. We have seen that, for this
to occur, it is necessary that the condition (7) be satisfied.
Given bJ , this condition yields a highest value for d

d = Int(bJ) (15)

d is called the dimensionality of space and its experimental
value settles a range of values for the parameter bJ

d < bJ < d+ 1 .

This section is devoted to a more careful study of the
matrix G.

G is a square matrix of order d. Gauge invariance GI1
states that G must be left unchanged under the operations
of the permutation group Sd of d objects.Gmay be written
accordingly as

Gµν = J0δµν + J1 (1 − δµν) . (16)

Then, the functional of a given CP can be written as

F (φi) = J0

∑
µ

ϕ2
iµ + J1

∑
µν( �=µ)

ϕiµϕiν . (17)

To express the parameters J0 and J1 in terms of b, J ,
and n, the three parameters of the model, it is necessary
to identify (17) with (8). By expanding the logarithmic
functions to the second order and by using the definition
(9) of polarization components, (8) becomes

F (φi) = n


∑

µ

(−J
2

+
1
2b

n

niµ

)
ϕ2

iµ − J

2

∑
µν( �=µ)

ϕiµϕiν


 .

The ratios n/niµ are of the order of d and the identification
of (17) with (8) yields

J0 ∼= −n

2

(
J − d

b

)
,

J1 ∼= −n

2
J .

If a convenient form of G is (16), this form is not unique
because any unitary transformation of this representation
is also convenient, in particular the one that diagonalizes
G. Since

Det (G− λI) = (J0 + (d− 1)J1 − λ) (J0 − J1 − λ)d−1
,

the diagonal representation identifies two and only two
subspaces forG. The first one corresponds to the eigenvalue

Gtt = J0 + (d− 1)J1 =
nd

2

(
1
b

− J

)
and is not degenerate. This subspace, of dimension 1 what-
ever d, will be called time dimension. The other subspace
corresponds to the eigenvalue

Grr = J0 − J1 =
nd

2b
.

This subspace, of dimension d − 1, corresponds to space
dimensions.

The dimensionality of our space is d = 4 which implies
4 < bJ < 5. We have, therefore, bJ > 1 and vacuum
is asymmetric.

In 4-dimensional spaces there is one time dimension
with eigenvalue

Gtt = 2n
(

1
b

− J

)
and three equivalent space dimensions with eigenvalue

Grr =
2n
b
.

Let us write

Gµµ = Sign (Gµµ) |Gµµ| = εµGµ (18)

and define the metric tensor g by gµν = δµνεµ. Since bJ > 1
its elements are

gtt = Sign
(
nd

2b
(1 − bJ)

)
= −1,

grr = Sign
(
nb

2b

)
= +1,

that is to say

g =




−1
+1

. . .
+1




and the metrics is Minkowskian. It is worth pointing out
that there is no more ambiguity on the sign of g (whereas
relativistic mechanics does not distinguish between g and
−g). The three dimensions of space and and the time dimen-
sion constitute a conformal space with dilatation factors
given by Gr and Gt, respectively.

As a matter of fact, this organization of space is fully
determined by the irreducible representations of groups
of permutations of d objects. For example G, in a four
dimensional space, is diagonalized along the following di-
rect sum of irreducible representations of S4, the group of
permutations of four objects (see Appendix B):

Γ4 = Γ1 ⊕ Γ3

a sum of two irreducible representations of dimensions 1
and 3 respectively.
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6 Vector fields dynamics

The polarization of cosmic points constitutes, as we have
seen, a scalar field which is possibly identified with the
Higgs fields but the physical fields one observes in nature
are 4-dimensional vector fields. They are defined as vectors
in the representation space and their components are thus
linear combinations of polarization components:

ψiµ =
∑

ν

Cµνϕiν , (19)

where C is a d-dimensional matrix that operates in the
internal (representation) space of CP’s. It can be shown
that the permutation gauge symmetry GI1 defines and or-
ganizes the various types of vector fields because this gauge
invariance compels the matrix C to transform according
to a direct sum of irreducible representations of S4. We
shall not go farther in that direction, however, because
this subject is outside the scope of the article.

We now consider the dynamics of vector fields.
Let us recall that ∆ is a symmetric square matrix of

orderN and that an element∆ij of∆ represents the overall
interaction between the CP’s ‘i’ and ‘j’. This interaction
is the result of a sum of randomly distributed binary in-
teractions between the CB’s which belong to the points.
They are therefore random parameters obeying a centered
Gaussian distribution. According to the LDU theorem of
Banachiewicz [12], any square matrix can be expressed as
a product of a lower triangular matrix L, of a diagonal
matrix A and of an upper triangular matrix U . When the
matrix is real and symmetric, as is the case for ∆, the two
triangular matrices are each other transpose:

∆ = DTAD

where D is triangular, that is to say Dij = 0 for i < j. DT

is the transpose matrix and A is diagonal. More precisely,
since space is homogeneous, A is a spherical matrix (it is
proportional to the unity matrix: Aij = aδij) and one may
take a = 1. Hence

∆ = DTD

and the realizable physical states are given by the following
eigenvalue equation:(

DTD
)⊗Gψ = κψ . (20)

Just as the elements of ∆ do, the elements of D obey
a centered Gaussian distribution.

In our model, we may imagine that space is a sort of
wall made with bricks, that are the CP’s, binded one to
the other by a cement which is provided by the elements
of the matrix D.

To be more precise, let us consider the set of linksDij as-
sociated with a given CP ‘i’. This set has N elements (that
is to say the number of CP’s). An element is the sum of n
randomly distributed elementary interactions ±J/n. Since
n is very large the (random) amplitudes of most elements
are close to zero, of the order of or less than σ = Jn−1/2.
Since N is very large, however, it is also likely that some

elements are far away in the tails of the Gaussian distri-
bution say 10σ or so. One may call this set of exceptional
CP’s the neighborhood of CP ‘i’. This definition has, in the
present context, no topological meaning whatsoever. The
links between the neighbors make so far a web that can be
embedded in spaces of any geometry.

One defines the increment of a polarization component
µ of CP ‘i′ by

δϕiµ =
∑

j

Dijϕjµ,

that is to say
δφi =

∑
j

Dijφj .

This quantity is mainly determined by the neighborhood
of CP ‘i’. It is a small quantity indeed since∑

j

Dij
∼= 0 .

The increment of the µth component of the vector field
along dimension ν is written as

δνψiµ = Cµνδϕiν = Cµν

∑
j

Dijϕjν

and one defines the partial derivatives of the matter field
components as

∂νψiµ =
Cµν

l∗
∑

j

Dijϕjν

for the first order derivatives, and as

∂2
νψiµ =

Cµν

l∗2

∑
jk

DT
ijDjkϕkν (21)

for second order derivatives. l∗ is a parameter, called the
metric limit, that defines the size of a CP. The metric limit
l∗, if this notion has any meaning, is certainly smaller than
the range we can reach with the available particles colliders
and is probably much larger than the Planck’s length.

One entry of (20) reads∑
jk,ν

DT
ijGµνDjkϕkν = κϕiµ .

One solution of this equation is a set of polarization com-
ponents. Therefore it is this equation that determines the
repartition of the numbers niµ between the various sub-
cosmic points.

With eqs. (18–21), this equation becomes

Gν l
∗2gν∂

2
νψiµ = κCµνϕiν . (22)

The summation over index ν is then carried out on both
members of (22). By introducing the Minkowski metrics
(εt = −1, εr = +1) one finds

Grl
∗2∆ψµ −

[
Gtl

∗2 ∂
2ψµ

∂t2

]
= κψµ (23)
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where ∆ is the usual three dimensional Laplacian. Here we
introduce two important parameters. The first one, called
the “velocity of light”, is defined by

c =
(
Gr

Gt

)1/2

(24)

and the other one, called “Planck’s constant”, by

� = l∗ (Gr)
1/2

.

The quotes are in order since, up to now, the identification
of (23) with the usual Klein-Gordon equation of quantum
mechanics is only formal.

Furthermore we write

κ = (mc)2 .

With these definitions (24) becomes(
1
c2

∂2

∂t2
−∆+

(mc
�

)2
)
ψν (r, t) = 0 (25)

which is recognized a set of four Klein-Gordon equations
indeed. This result strongly suggests that the present ap-
proach could give rise to an interpretation of quantum me-
chanics, but the link is not really achieved here. It remains
to see how the various fields, boson and fermion fields, come
into play and, a point of paramount importance, how they
obey the relevant quantum statistics.

Let us look at the plane waves solutions of the Klein-
Gordon equation

ψ (r, t) = exp (i (kr − ωt)) .

Substituting in (25) leads to[
−ω2

c2 + k2 +
(mc

�

)2
]
ψ (r, t) = 0

and therefore to

�
2ω2 = �

2c2k2 +m2c4 .

By defining E = �ω (the Planck relation) and p = �k
(the De Broglie relation) one finds

E2 = c2p2 +m2c4

which is the formula of the energy of a free particle of
mass m in special relativity. The Klein-Gordon equation
plays a central role in physics: on the one hand its factor-
ization leads to the Dirac equation whose symmetry fits
the fermions symmetry; on the other hand, in the limit of
small momenta, the Klein-Gordon equation reduces to the
Schrödinger equation.

We have thus achieved a substantial part of our program
but some important points still need to be addressed. A
central issue is that a comprehensive theory of space-time
must also provide an interpretation of quantum mechanics.
Another point, that is probably difficult to accept, is to see

that the interactions between neighboring CP’s propagate
the polarization components, that is to say propagate the
matter fields, throughout the whole network of CP’s and
that it is the process that builds space as a whole. It is worth
noting that space is the same whatever the building field,
be it a boson or a fermion field and, to use the metaphor we
have introduced above, the wall is the same whatever the
bricklayer. Would fields not exist, space would not exist
either, which fits the Penrose point of view (Sect. 1): it is
meaningless to imagine space as preexisting to fields and
to see the network of CP’s as a very involved structure
embedded in this space. Moreover, since the indices µν
refer to internal spaces of CP’s and since physics is to be
left invariant either under the elements of S4 or under the
elements of SO(4), there is nothing such as a parallelism
between the internal dimensions of CP’s.

7 Conclusion

The purpose of this paper is to put forward the thesis that
our physical space could be entirely made of binary units
and to show that this structure may provide a new approach
to understand the space and time of special relativity.

The model is based upon a two level organization.
(1) The fundamental level is that of “cosmic bits” (or CB’s),
which are physical binary systems similar to Ising spins.
The CB’s interact one with the other through random
binary interactions (a spin glass model).
(2) The other level is that of “cosmic points” (or CP’s).
A CP is a set of cosmic bits fully interconnected through
ferromagnetic interactions. In a cosmic point, an entity
analogous to the Einstein point of the Universe (or world
point), the notions of space and time are meaningless.

The properties of the model are determined by three
parameters:
(a) the interaction J/n between the CB’s,
(b) the number n of CB’s into a CP, and
(c) a cosmic noise parameter b.

Let us summarize the main results derived in the article.
First of all the model introduces rather naturally a num-

ber of physical concepts that usually have an ontological
status. This is the case for words such as dimensionality,
dimension, space, time, matter fields etc. The theory strives
to give a precise meaning to all those terms. It shows in par-
ticular the following.
(a) The dimensionality d of space is given by

d = Int (Jb)

and, since the experimental value of d is d = 4 , that one has
4 < Jb < 5.
(b) The dimensions are organized along two, and only two,
types of dimensions. On the one hand there is one, and only
one, time-type dimension whatever d and, on the other
hand, there are d − 1 equivalent space-type dimensions.
The dimensionality of spatial dimensions in our universe
is therefore d− 1 = 3.
(c) The metrics is Minkowskian.
(d) The set of realizable states for a given matter free field
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constitutes a Hilbert space.
(e) The dynamics of matter fields is determined by a Klein-
Gordon-type equation.
(f) The two fondamental constants, the “velocity of light”
and the “Planck’s constant”, can be expressed in terms of
the parameters of the model.

For example the “velocity of light” is given by

c2 =
Gr

Gt
=

nd/2b
nd/2 (J − 1/b)

=
1

bJ − 1
(26)

It is, in fact, a dimensionless, universal, parameter that de-
termines the ratio between the standards of length and time.

Moreover the “Planck’s constant” is given by

� = l∗G1/2
r = l∗ (n/2b)1/2

.

The “Planck’s constant” depends on the metric scale l∗
whereas the “velocity of light” is independent on that scale.
We have no precise idea of the value of the metric scale
but, if the model has any meaning, it must be in the range

10−18cm > l∗ > 10−33cm

where the lower limit is the Planck’s length and the upper
limit is the length accessible to the present particles collid-
ers. We also may argue that, since the model tentatively
establishes a bridge between boson and fermion particles,
the metric scale could possibly be the scale where the su-
persymmetric theories (SUSY) become accessible that is
to say

l∗ ∼= 10−21cm .

The energies corresponding to this metric scale are of the
order of 10 000 TeV. They are so large that laboratory
experimental observations are probably impossible. The
model, however, could be relevant in the fields of high
energy physics, of astrophysics or even of cosmology. Let
us give an example in high energy physics and another
in cosmology.

We have seen that c, the so-called “velocity of light”,
provides a natural scale factor between the time-like compo-
nent and the three space-like components of quadrivectors
in the usual space-time. This remark may have a direct
application in electroweak theory.

According to the GSW theory, the electromagnetic and
weak interactions transform together according to the sym-
metry obtainedby the product ofU(1), the gauge symmetry
group associated with the electromagnetic interaction and
SU(2) the gauge symmetry Lie group associated with the
weak interaction.

TEW = U(1) × SU(2) .

Since the generators of the product TEW of Lie groups
U(1) and SU(2) is given by the sum of their generators,
the interaction is written as

Θ = gW 0σ0 + g′ ∑
µ=1...3

Wµσµ

where the identity matrix σ0 = 1(2) is associated with U(1)
and the threePaulimatricesσx,y,z withSU(2). This expres-
sion defines four boson fields W . The indices µ are Lorentz

indices and, therefore, the four 2-dimensional matrices may
be considered as a quadrivector. It is then convenient to
assume that g′/g=c.

The Weinberg angle is defined by

tan (θW ) = g′/g .

The experimentally accessible parameter is [see (26)]

sin2 (θW ) =
tan2 (θW )

1 + tan2 (θW )
=

c2

1 + c2 =
1/ (bJ − 1)

1 + 1/ (bJ − 1)

=
1
bJ
.

Since 4 < bJ < 5 one has

0.20 < sin2 (θW ) < 0.25 .

The experimental value is

sin2 θW = 0.231

which is consistent with the prediction. With this value as
a datum one has

bJ = 4.33

and
c = 0.548 .

This parameter provides a natural link between the
standard unit of time (sut) and the standard unit of length
(sul). Let us assume that 1 sut = 1 sec which fits our bio-
logical ranges of time. Then

1 sul = c× 2.99 × 108 m = 1.64 × 108m

a standard of length of little practical interest for daily
life. The situation is less uncomfortable in astronomy. Let
us take the period of rotation of large planets (such as
Jupiter) as the standard unit of time: 1 sut = 10 hours.
Then the size of the solar system is of the order of 1 sul.
As another example we take the period of rotation of large
planets around the Sun as the standard unit of time: 1 sut =
10 years. Then the interstellar distances is of the order of
1 sul.

Finally let us consider an example in cosmology. When,
in our model, the cosmic noise b is lower than its critical
value b = 1/J neither space-time nor fields or matter would
exist. It would therefore be natural to consider the Big
Bang as a phase transition where the cosmic noise crosses
its critical value. Then inflation, a theory proposed by
Guth [13] to account for the homogeneity of the primitive
Universe despite the limited speed of light that would have
hindered any communications between its various parts,
could receive a simple explanation. In the vicinity of the
critical value, when the Big Bang occurs, our model predicts
that the “velocity of light” is infinite (see (26)) which would
settle the causality problem.

More generally high energy physics and cosmology are
the two fields where the present theory could bring about
some more useful information.
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The model, for example, could possibly give an internal
structure (inside CP’s) to quantum particles. If the case
arises the present approach could also explain the structure
of fermion families in the StandardModel. It is evenpossible
that it could provide a mean for the calculation of masses
of bare particles.

In the field of cosmology the model – we have just seen
an example – could shed a new light on the dynamics of
the Big Bang.

As a final word it should be said that the present model
is certainly not a theory of everything (a TOE). It simply
adds a new picture to the already long list of cosmological
models of the universe.
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AppendixA:Calculationofthe“free functional”
of a cosmic point

The functional of a CP ‘i’ is given by

H (φi) = −J

n

∑
〈αµ,βν〉

σiαµσiβν

where the sum is over all bit pairs of the point. Since

siµ =
1
niµ

∑
α

σiµα

one has

niµniνsiµsiν =

(∑
α

σiµα

)∑
β

σiνβ


 =

∑
αβ

(σiµασiνβ)

and
H (φi) = − J

2n

∑
〈µν〉

niµniνsiµsiν .

The partition function is

Zi =
∑
{σi}

exp (−bH (φi))

where the sum is over all possible configurations of the
cosmic point. The sum may be carried out in two steps:

Zi =
∑

{siµ}
exp


 bJ

2n

∑
〈µν〉

niµniνsiµsiν


 ∑

{σi} siµgiven
1,

that is to say a sum over all possible sets of polarizations
and, then, a sum over all bits states for a given set of
polarizations. The last term

W =
∑

{σ},siµ given
1

is purely combinatorial in nature. It is given by

W =
n!∏

µ
(niµ↑!niµ↓!)

where

niµ↑ =
niµ

2
(1 + siµ) ,

niµ↓ =
niµ

2
(1 − siµ) .

By using the Stirling formula one obtains

Ln (W ) ∼= −
∑

µ

[
niµ

2
(
(1 + siµ) Ln (1 + siµ)

+ (1 − siµ) Ln (1 − siµ)
)]

where a non-relevant constant has been skipped. The par-
tition function reads

Z =
∑
{sµ}

exp

[
bJ

2n

∑
µν

niµniνsiµsiν

−
∑

µ

[
niµ

2
(
(1 + siµ) Ln (1 + siµ)

+ (1 − siµ) Ln (1 − siµ)
)]]

.

It is given the following form,

Zi =
∑
{sµ}

exp (−bF (φi)),

a sum which, in the thermodynamic limit, reduces to one
term, the term which minimizes F . The thermal averages
of order parameters are then given by the order parame-
ters which makes F minimum (the so-called saddle point
method) and one has

F (φi) =
−J
2n

∑
µν

niµniν 〈siµ〉 〈siν〉

+
∑

µ

niµ

2b
(
(1 + 〈siµ〉) Ln (1 + 〈siµ〉)

+ (1 − 〈siµ〉) Ln (1 − 〈siµ〉)) .
The realizable physical states are those that minimize F .
If we consider the case where d = 1 that is to say if

niµ = nδµ1; 〈siµ〉 = ϕiδµ1

the free functional reduces to

F (ϕi) = n

(−J
2
ϕ2

i +
1
b

[(
1 + ϕi

2

)
Ln (1 + ϕi)

+
(

1 − ϕi

2

)
Ln (1 − ϕi)

])
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Appendix B: Physics must be left invariant
under the operations of the group
of permutations of four objects

The permutation group S4 of four objects has 4! = 24
elements. The invariance of four dimensional matrices, such
asG, under those transformations, requires the matrices to
commute with the 24 matrices of permutation. An example
of a permutation matrix is



. . . 1
1 . . .

. . 1 .

. 1 . .




which is a four dimensional representation of permutation
(1234) ⇒ (2431). Let Γ4 be this representation. Since S4
has 5 classes there exist 5 irreducible representations which
are

Γ1, Γ
∗
1 , Γ2, Γ3, Γ

∗
3

with orders 1, 1, 2, 3, and 3, respectively [11]. The table of
characters of these representations is given in Table 1 and
the table of characters of representation Γ4 in Table 2.

Table 1. Table of characters of group S4

classes (1) : 1 (ab) : 6 (ab)(cd) : 3 (abc) : 8 (abcd) : 6
Γ1 1 1 1 1 1
Γ ∗

1 1 −1 1 1 −1
Γ2 2 0 2 −1 0
Γ3 3 1 −1 0 −1
Γ ∗

3 3 −1 −1 0 1

Table 2. Table of characters of representation Γ4

classes (1) : 1 (ab) : 6 (ab)(cd) : 3 (abc) : 8 (abcd) : 6
Γ4 4 2 0 1 0

From these two tables one finds the decomposition of
Γ4 into irreducible representations of S4 as a direct diag-
onalization of G shows

Γ4 = Γ1 ⊕ Γ3 .
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